STUDY OF DIURETIC ACTIVITY OF AQUEOUS AND ALCOHOLIC EXTRACT OF THE ROOT OF HOMONOIA RIPARIA LOUR *1B. N. SATISH KUMAR, 2V. MADHAVAN, 2S.N. YOGANARSHIMAN, 1ARCHANA SWAMY, ³JYOTHIMJOY ¹Gautham College of Pharmacy, RT Nagar, Bangalore, Karnataka, India 560032 ²M. S.Ramaiaha college of Pharmacy, Bangalore, Karnataka, India 560054. ³Sri Vidhyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, India 517102. #### **ABSTRACT** In the Indian system of medicine, *Homonoia riparia* Lour. (Euphorbiaceae) root part is claimed to possess powerful diuretic activity. However, the diuretic potential of root is not yet investigated. The aim of this study was to evaluate the diuretic potential of aqueous extract (AEHR) and 95% of ethanol extract of the root of *Homonoia* riparia Lour (EEHR) in rats. Different concentrations of AEHR and EEHR (250 and 500 mg/kg b.w) were per orally administered (n = 6 per each treatment group) to hydrated rats and their urine output was monitored over a period of 5 h after drug administration. Different parameters viz. total urine volume, urine concentration of electrolytes such as sodium, potassium and chloride have been evaluated. The rats treated with AEHR and EEHR (250 and 500mg/kg; p.o.) showed higher urine volume when compared to respective control. Excretion of cations (sodium and potassium ions) and anions (chloride ions) in both AEHR and EEHR also increased significantly with respect to the control group. The elevated diuretic potential of AEHR and EEHR was statistically significant (P<0.001) and comparable to that of standard furosemide (10mg/kg; p.o.). The present study shows that the drug has significant diuretic activity. This study suggests that the active component(s) in AEHR and EEHR had similar diuretic effect to that of furosemide. These results validate the traditional use of H. riparia as a diuretic agent. KEY WORDS: Homonoia riparia, Urinary volume, Diuretic activity. #### 1.INTRODUCTION Increasing urine and electrolytes excretion may be beneficial in the treatment of fluid overload, like acute and chronic renal failure, hypercalciurea and cirrhosis of liver and also as an antihypertensive agent (McVeigh, 1995). A number of diuretics like mannitol, thiazides, furosemide, and ethacrinic acid are used in practice. Still there is a need for more effective and less toxic diuretic. Many indigenous drugs have been claimed to have diuretic effect in Ayurveda system of medicine but they were not properly investigated. Among the several plants Musa sapientum L. (Musaceae) (Jain, 2007), Cleome rutidosperma (Capparidaceae) (Bose, 2006; Bose, 2007), Cardiospermum halicacabum Linn.(Sapindaceae) (Chandraprakash, 2008), Portulaca oleracea (Portulacaceae) (Pagar, 2007), Aerva lanata (Linn.) Juss. ex Schult.(Amaranthaceae) (Vetrichelvan, 2000), Cocos nucifera (Areacaeae) (Baheti and Rathil, 2006) have shown excellent diuretic activity. # *Corresponding author Email: satish02p@rediffmail.com Mobile: 099164 88119 Homonoia riparia Lour. (Euphorbiaceae) is a shrub attaining a height of 1 to 3 meters. The leaves are linear-lanceolate, 12 to 20 centimeters long and 1.5 to 2 centimeters wide; the upper surface is green and shining, and the lower surface brown and hairy (Gamble, 1957). The shrub is known as *Pashanabheda* in Sanskrit, Pashanabedha is a derived word from pashana meaning a stone and bhedha mean to break. This meaning is attributed to the drug since it is claimed to possess the property of disintegrating the calculi or stones in the bladder as well as in Kidney (Narayanaswamy, 1967). This is one of the controversial drug in Ayurveda (Vaidya, 1982). It is widely distributed in Asia in India, China, Malaysia, Indonesia and Philippines. With in India, it has been recorded in found in North, East and Central India, the Deccan Peninsula and Andaman Islands, usually inhabiting rocky riverbeds (Hooker, 1887; Henry, 1983; Pullaiah, 1997; Yoganarasimhan, 1981). In traditional medicine, the root is good for ulcers, strangury, urinary discharges, vesical calculi. A decoction is given in piles, stone in bladder, gonorrhoea and used as a diuretic (Kirtikar and Basu, 1935). The EEHR was reported to posse's antiurolithiatic activity in albino rats (Prasad, 1997). There is paucity of data about the pharmacological activities of *Homonoia riparia*, which prompted us to pursue this pharmacological evaluation of *H. riparia* root to verify the medicinal property. Therefore, the present study was undertaken to evaluate the diuretic activity of AEHR and EEHR in normal rats. #### 2.MATERIALAND METHOD #### Plant materials The roots of *Homonoia riparia* Lour. were collected from Thenmalai forest, Kerala state. The taxonomic identification of the plant was established by Dr. S. N Yoganarismhan, Research co-ordinator, Department of pharmacognosy, M.S Ramaiaha college of Pharmacy, Bangalore and a voucher specimen (No 28) has been kept in our laboratory for furture reference. # Preparation of extract The roots were dried under sunlight, powdered in the hammer mill and passed through sieve no 60 and store in air tight container. The dried, powdered roots were extracted using 95% ethanol in a soxhlet extraction apparatus. The extract cleared of ethanol by distillation under reduced pressure which was kept in the desicator and a weighed amount of the extract was dissolved in normal saline for the experiment. The dried, powdered root was macerated with chloroform: water (1: 1000) for 24 hours, the solvent was evaporated to dryness. Preliminary qualitative chemical analysis of the both extract indicated the presence of phytosterols, tannins and phenolic compounds, carbohydrates and glycosides, gums and mucilage. #### Animals Swiss albino mice weighing 18-30 g of either sex were used for acute toxicity studies and male albino rats of Wistar strain, in the weight range of 200-250 g were used for diuretic activity studies. The animals was purchased from Sri venkateswara enterprises, Bangalore and housed in the animal house of M. S. Ramaiah College of Pharmacy, Bangalore at least 2 weeks prior to the study, so that animals could adapt to the new environment. Animal house was well maintained under standard hygienic conditions, at a temperature ($22 \pm 2^{\circ}$ C), room humidity ($60 \pm 10\%$) with 12 h day and night cycle, with food and water *ad libitum*. # Acute toxicity study Acute toxicity studies were carried out to study acute toxic effects of the drug and to determine minimum lethal dose of the drug extracts. The AEHR and EEHR were administered or ally to separate groups of overnight fasted mice at doses of 30, 100, 300, 1000 and 3000 mg/kg. After administration of the extracts, the animals were observed continuously for the first three hours, for any toxic manifestation like increased motor activity, salivation, acute convulsion, coma and death. Thereafter, observations were made at regular intervals for 24 h (Gosh , 1984). Further, the animals were under observation up to a period of one week. On the basis of LD50, two doses were selected for detailed study. Screening of diuretic activity (Vogel and Vogel, 2002; Bose , 2006) The method of Lipschitz (1943) was employed for the assessment of diuretic activity, male albino rats weighing 200 - 250 g were selected, and the tail base was pressed to empty the bladder of remaining urine. The animals were divided into 6 groups of 6 each. Group I was maintained as control and administered 5ml/kg of normal saline p.o. Group II was maintained as Standard and administered 10 mg/kg of Furosemide p.o. Group III and IV were administered AEHR 250 and 500 mg/kg p.o. respectively. Group V and Group VI were administered EEHR 250 and 500 mg/kg body weight p.o. respectively. All animals were hydrated with 5 ml/kg of distilled water prior to drug administration. Animals were deprived of food and water 18 h before the experiment. They were hydrated with 5 ml/kg of water prior to drug/extract administration. Immediately after dosing, animals were placed in metabolic cages (2) in one cage), specially designed to separate urine and feaces. The urine was collected in measuring cylinder up to 5 h after dosing. During this period, animals were deprived of food and water. The parameters measured were total urine volume, urine concentration of Na⁺, K⁺ and Cl⁻. Concentration of Na⁺ and K⁺ were determined using Flame photometer (Jeffery, 1989). While Cl concentration was estimated titrimetrically using 0.02N AgNO, with 5% potassium chromate as indicator (Beckette, 1997; Indian Pharmacopoeia, 1996), appearance of brick red precipitate was taken as the end point. # The ratio, urinary excretion in test group: Urinary excretion in control group has been used for the measure of diuretic action for the treated groups. Diuretic action = Urinary excretion in test group / Urinary excretion in control group The relative diuretic potency can be determined by (VanArmar, 1954). To obtain the diuretic activity, Diuretic activity = Diuretic action of extract / Diuretic action of standard The sum of Na⁺ and Cl⁻ excretion was estimated for saliuretic activity. The ratio Na+/K+ was estimated as a natriuretic activity. The ratio Cl⁻ / Na⁺ + K⁺ (ion quotient) was derived to estimate carbonic anhydrase inhibition (Somova, 2003). # Statistical analysis The data were expressed as Mean \pm S.E.M. and statistically analyzed using one way ANOVA followed by Tukey-Kramer's Multiple comparison test, P<0.05 was considered significant. #### 3.RESULTS The hot extraction of coarse powder (50g) of *H. riparia* was carried out with 95% ethanol yielded 6.40% w/w and extraction of coarse powder with chloroform water yielded (2.59% w/w). The phytochemical analysis of the both extract shown the presence of phytosterols, phenolic compounds and tannins, carbohydrates and glycosides, gums and mucilage. #### Acute toxicity study No toxic symptoms or death was observed in any of the animals with either extracts up to the dose of 3000 mg/kg, till end of the study. #### Effect on urine volume Table I showed that, the cumulative urine volume was measured at 5^{th} h of control (2.5 ± 0.05) furosemide (5.4 ± 0.115) , aqueous 250 mg/kg (3.133 ± 0.08) , aqueous 500 mg/kg (3.6 ± 0.152) , alcohol 250 mg/kg (3.43 ± 0.120) , alcohol 500 mg/kg (3.63 ± 0.233) . The results were significant at p<0.001 with Furosemide and alcohol extract 500 mg/kg; p<0.01 for aqueous extract 500 mg/kg and alcohol extract 250 mg/kg, p<0.05 for aqueous extract 250 mg/kg, when analyzed by Tukey - Kramer multiple comparison test. The urine volume of furosemide, aqueous extract and alcohol extract treated groups increased 2.16, 1.253, 1.44, 1.372 and 1.452 fold respectively when compared with the control group. # Effects on electrolyte excretion Table II shows the diuretic responses with its electrolyte excretion potency of the AEHR and EEHR are highly significant in comparison with control animals. There was a significant increase (p<0.001) in urine concentration of Na⁺, K⁺, Cl⁻ in the treated groups. # Effect on natriuretic, saliuretic and carbonic anhydrase inhibition From the electrolyte excretion of Na⁺, K⁺ and Cl⁻ of AEHR and EEHR at both dose levels (250 mg and 500 mg/kg), the natriuretic (Na⁺/K⁺), saliuretic (Na⁺ and Cl⁻)activity and carbonic anhydrase inhibition (Cl⁻/Na⁺ +K⁺) were estimated and compared with control. No carbonic anhydrase inhibition was detected. The natriuretic ratio of AEHR and EEHR 250 and 500 mg/kg were found as 1.220, 1.273, 1.249 and 1.281 compared to control 1.175 and is significant natriuretic. The significant saliuretic activity is also been showed by both AEHR and EEHR. Table I. AEHR and EEHR on urine volume and diuretic at 5th h in rat. | Extract/ Drug | Dose | Urine
volume(ml) | Diu retic
action | Diuretic activity | | |---------------|--------------|---------------------|---------------------|-------------------|--| | Control | (5ml of 0.9% | 2.5±0.057 | | | | | | Nacl/kg) | | | | | | Furosemide | 10 mg/kg | 5.4±0.115*** | 2.16 | | | | Aqueous | 250 mg/kg | 3.133±0.08* | 1.25 | 0.231 | | | Aqueous | 500 mg/ kg | 3.6±0.152 ** | 1.44 | 0.266 | | | Alcohol | 250mg/kg | 3.43±0.120** | 1.37 | 0.254 | | | Alcohol | 500 mg/kg | 3.63±0.233*** | 1.45 | 0.268 | | Table II. AEHR and EEHR on electrolyte excretion, saliuretic and natriuretic activity at 5th h in rat. | Extract /
Drug | Dose | Na ⁺
(mEq/l) | K [†]
(mEq/l) | Ct
(mEq/l) | Na ⁻ /K ⁺
ratio | Na ⁺ +Cl ⁻ | Cl ^{-/}
Na ⁺ +Cl | |-------------------|--------------------------|----------------------------|---------------------------|---------------|--|----------------------------------|---| | Control | (5ml of 0.9%
Nacl/kg) | 14.166±0.928 | 12.05±0.763 | 45.3±1.33 | 1.175±
1.216 | 59.46=2.25 | 4.52±2.19 | | Furosemide | 10 mg/kg | 72.82±0.632*** | 53,16±1,786*** | 189.3=2.66*** | 1,369±
0,353 | 262,12±3,29 | 1,50±2,12 | | Aqueous | 250 mg/kg | 39,85=.1,916*** | 32,49±0,574*** | 70,66=1,33*** | 1.22±
3,33 | 110,51±3,24 | 0,976±0.53 | | Aqueous | 500 mg/kg | 57,17±1.930*** | 44,88±0,236*** | 89,33=3,52*** | 1,273±
8,177 | 146,5=5,45 | 0,875±1.65 | | Alcohol | 250mg/ kg | 62,31±2.614*** | 49,85±4,748*** | 89,33=1,33*** | 1,249±
0,550 | 151,64±3,94 | 0.796±0.18 | | Alcohol | 500 mg/kg | 68,27±3,359*** | 53,25±0,650*** | 128±4,169*** | 1,281±
5,167 | 196,6=7,52 | 1,06±1,03 | Values expressed as Mean \pm S.E.M One way ANOVA: p value found to be 0.0001 considered extremely significant (for parameters). Tukey-Kramer's multiple comparison test *p<0.05, **p<0.01, ***p<0.001; when compared with the control group. # **DISCUSSION** Acute toxicity studies help to evaluate the drug's acute toxic effect and to determine minimum lethal dose. It was found that both aqueous and alcohol extract of the H. riparia were safe up to a dose of 3000 mg/kg in Swiss albino mice. Both AEHR and EEHR produced significant dose dependent increase in urine volume as well as urine concentration of Na⁺, K⁺ and Cl⁻. The increase in the ratio of excreted sodium to potassium ion for the extracts in treated groups, compared to control, indicates that the extract increases sodium ion excretion to a greater extent than potassium. This is a very essential quality for a good diuretic. K⁺ excretion in aqueous extract 250 mg/ kg and 500 mg/ kg and alcohol extract 250 mg/kg body weight treated groups was less when compared with that of standard. These findings suggest that extracts of H. riparia posses a potassium sparing property. The drug also posses significant saliuretic activity. The presence of polyphenolic compounds, carbohydrates, proteins in *Portuleca oleracea* (Hemanth, 2007) and steroids, tannin and carbohydrates in *Jussiaea suffruticosa* Linn. (Mythreyi, 2008) are reported to possess diuretic activity and natriuretic activity. Preliminary phytochemical analysis of the AEHR and EEHR revealed the presence of phenolic compounds and tannins, phytosterols, carbohydrates and glycosides, fixed oil and fats, gums and mucilage. These constituents in AEHR and EEHR may be responsible for the observed diuretic activity. On the basis of results obtained, it is evident that both AEHR and EEHR possess effective hypernatraemic, hyperchloremic, and hyperkalaemic diuretic property, which provides the pharmacological evidence to support the folk claim for the root as an effective diuretic agent. ## 4.CONCLUSION. In conclusion, the present study the results demonstrate that AEHR and EEHR possess significant effect on urinary excretion of water and electrolytes. It has shown that the active constituents in AEHR and EEHR had similar diuretic spectrum to that of furosemide. The results and this study substantiate the traditional use of this drug as one of the botanical sources of the drug *Pashanabheda*. ### 5.ACKNOWLEDGEMENTS My thanks to The Management of M.S. Ramaiah College of Pharmacy, Bangalore and Gokula Education Foundation, Bangalore, for providing all facilities for this work. #### REFERENCES Baheti AM, Rathil BS, Diuretic activity of *Cocos Nucifera* Husk in Rats, Journal of Natural Remedies, 6(1), 2006, 35-37. Beckette AH, Stenlake JB, Practical Pharmaceutical Chemistry Part 1, CBS Publishers & Distributors, New Delhi, 1997, 197. Bose A, Mondal S, Gupta JK, Dash GK, Ghosh T, Studies on diuretic and laxative activity of ethanolic extract and its fractions of *Cleome rutidosperma* aerial parts, Ph.cognosy Magzine, 2(7), 2006, 175-179. Bose A, Mondal S, Gupta JK, Dash GK, Ghosh T, Panda DS, Diuretic and antibacterial activity of aqueous extract of *Cleome rutidosperma* D.C, Indian Journal of Pharmaceutical Sciences, 69(2), 2007, 292-294. Chandra Prakash K, Kuppast IJ, Manjunath C, Jawahar N, Diuretic activity of whole plants extract of *Cardiospermum halicacabum* (Linn), Pharmacognosy Magazine, 4(3), 2008, 80-82. Gamble JS, The Flora of the Presidency of Madras, vol 3, BSI, Calcutta, 1957, 1333. Gosh MN, Fundamentals of Experimental Pharmacology, Scientific book agency, Edn 2, Calcutta, 1984, 151-157. Hemanth JP, Jyothi TM, Rajendra SV, Veerana Gouda A, Prabhu K and Ramachandra Setty S, A study on preliminary phytochemical and diuretic activity of leaves of *Potulaca oleracea*, Pharmacognosy Magazine, 3(12), 2007, 264-266. Henry AH, Kumary GR and Chithra V, Flora of Tamil Nadu, edn. 3, Botanical Survey of India, Coimbatore, 1983, 232. Hooker JD, Flora of British India, Vol 5, International Book Distribution, London, 1887, 455. Indian Pharmacopoeia, Vol 2, Publications and Information Directorate (CSIR), New Delhi, India, 1996, 689. Jain DL, Baheti AM, Parakh SR, Study of antacid and diuretic activity of ash and extracts of *Musa sapientum* L. fruit peel, Pharmacognosy Magazines, 3(10), 2007, 116-120. Jeffery GH, Bassett J, Mendham J, Denny RC, Vogel's Textbook of quantitative Chemical Analysis, 5th Edn, Addison Wesley Longman Ltd., England, 1989, 801. Kirtikar KR and Basu BD, Indian Medicinal Plant, Vol.3, Bishan Singh Mahendra Pal Singh, Dehra Dun, 1935, 2272-2273. Lipschitz WL, Hadidian Z, Kerpesar A, Bioassay of diuretics, Journal of Pharmacology Experimental Therapeutics, 79, 1943, 97-110. McVeigh G, Flack J and Grimm R, Goals of antihypertensive therapy Drugs, 2 (49), 1995, 161-75. Mythreyi R, Rajkumar N, Sasikala E, Evaluation of Diuretic activity of *Jussiaea suffruticosa* Linn, Pharmacologyonline, 2, 2008, 633-639. Narayanaswami V, Ali US, *Pashanabheda*, JRIM1(2),1967, 242-249. Pagar HJ, Jyothi TM, Rajendra SV, A study on preliminary phytochemical and diuretic activity of leaves of *Potulaca oleracea*, Pharmacognosy Magazine, 3(12), 2007, 264-266. Prasad KVSRG, Abraham R, Bharathi K, Srinivasan KK, Evaluation of *Homonoia riparia* Lour, For antiurolithiatic activity in albino rats, International Journal of Pharmacognosy, 35 (4), 1997, 278-283. Pullaiah T, Ali maulali D, Flora of Andhra Pradesh (India), vol 2, Scientific publishers, Jodhpur, 1997, 871-872. Somova LI, Shode FO, Ramanan P, Nadar A, Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from *Olea europaea*, subspecies Africana leaves, Journal of Ethnopharmacology, 84, 2003, 299-305. Vaidya B, Some controversial drugs in Indian medicine, Chaukhambha Orientalia, Varanasi, India, 1982, 3-8. Van Armar GG, The diuretic activity of isocytosines, Journal of Pharmacology Experimental Therapeutics, 111,1954, 285-292. Vetrichelvan T, Jegaseesan M, Palaniappan MS, Murali NP, Sasikumar K, Diuretic and anti-inflammatory activities of *Aerva lanata* in rats, Indian Journal of Pharmaceutical Sciences, 62(4), 2000, 300-302. Vogel GH, Vogel WH, Drug discovery and evaluation, Springer, Berlin. 2002, 323-324. Yoganarasimhan SN, Krishnaier Subramanyam, Flora of Chickmangalure District, International book distributor, Karnataka, 1981, 302.